Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy

Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy

Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA111, 15296–15303 (2014).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Bortolini, E. et al. Early Alpine occupation backdates westward human migration in Late Glacial Europe. Curr. Biol.31, 2484–2493.e7 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature615, 117–126 (2023).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Lugli, F. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat. Ecol. Evol.3, 905–911 (2019).

Article 
PubMed 

Google Scholar 

Wren, C. D. & Burke, A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS One https://doi.org/10.1371/journal.pone.0217996 (2019).

Ruiz-Redondo, A. et al. Mid and Late Upper Palaeolithic in the Adriatic Basin: Chronology, transitions and human adaptations to a changing landscape. Quat. Sci. Rev.276, 107319 (2022).

Article 

Google Scholar 

Modi, A. et al. Paleogenetic and morphometric analysis of a Mesolithic individual from Grotta d’Oriente: An oldest genetic legacy for the first modern humans in Sicily. Quat. Sci. Rev.248, 106603 (2020).

Article 

Google Scholar 

Villalba-Mouco, V. et al. Survival of Late Pleistocene Hunter-Gatherer Ancestry in the Iberian Peninsula. Curr. Biol.29, 1169–1177.e7 (2019).

Article 
PubMed 

Google Scholar 

Villalba-Mouco, V. et al. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat. Ecol. Evol.7, 597–609 (2023).

PubMed Central 
PubMed 

Google Scholar 

Lugli, F. et al. Tracing the mobility of a Late Epigravettian (~ 13 ka) male infant from Grotte di Pradis (Northeastern Italian Prealps) at high-temporal resolution. Sci. Rep. https://doi.org/10.1038/s41598-022-12193-6 (2022).

Article 
PubMed Central 
PubMed 

Google Scholar 

Nava, A. et al. Early life of Neanderthals. Proc. Natl Acad. Sci. USA117, 28719–28726 (2020).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Nava, A. et al. Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy). Sci. Rep.7, 1–10 (2017).

Article 
ADS 
CAS 

Google Scholar 

Teschler-Nicola, M. et al. Ancient DNA reveals monozygotic newborn twins from the Upper Palaeolithic. Commun. Biol.3, 1–11 (2020).

Article 

Google Scholar 

Calattini, M. Scoperta di una sepoltura paleolitica a Grotta delle Mura (BA). Rassegna di archeologia: preistorica e protostorica 37–45 https://doi.org/10.1400/248076 (2002).

Stloukal, M. & Hanakova, H. Die Longe der langskonochen altslavischer Bevolkerungen unter besonderer Bercksichtigung von Wachstumsfragen. Homo29, 53–69 (1978).

Google Scholar 

AlQahtani, S. J., Hector, M. P. & Liversidge, H. M. Brief communication: The London atlas of human tooth development and eruption. Am. J. Phys. Anthropol.142, 481–490 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon51, 337–360 (2009).

Article 

Google Scholar 

Reid, D. J. & Dean, M. C. Variation in modern human enamel formation times. J. Hum. Evol.50, 329–346 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Hillson, S. Dental Anthropology (Cambridge University Press, 1996).

Molnar, S. Human tooth wear, tooth function and cultural variability. Am. J. Phys. Anthropol.34, 175–189 (1971).

Article 
CAS 
PubMed 

Google Scholar 

Hutchinson, D. L. & Spencer Larsen, C. Determination of Stress Episode Duration from Linear Enamel Hypoplasias: A Case Study from St. Catherines Island, Georgia. Hum. Biol.60, 93–110 (1988).

CAS 
PubMed 

Google Scholar 

Moorrees, C. F. A., Fanning, E. A. & Hunt, E. E. Formation and resorption of three deciduous teeth in children. Am. J. Phys. Anthropol.21, 205–213 (1963).

Article 
CAS 
PubMed 

Google Scholar 

Sabel, N. et al. Neonatal lines in the enamel of primary teeth—A morphological and scanning electron microscopic investigation. Arch. Oral. Biol.53, 954–963 (2008).

Article 
PubMed 

Google Scholar 

Nava, A., Frayer, D. W. & Bondioli, L. Longitudinal analysis of the microscopic dental enamel defects of children in the Imperial Roman community of Portus Romae (necropolis of Isola Sacra, 2nd to 4th century CE, Italy). J. Archaeol. Sci. Rep.23, 406–415 (2019).

Google Scholar 

Reid, D. J., Beynon, A. D. & Ramirez Rozzi, F. V. Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. J. Hum. Evol.35, 463–477 (1998).

Article 
CAS 
PubMed 

Google Scholar 

Nava, A. et al. New regression formula to estimate the prenatal crown formation time of human deciduous central incisors derived from a Roman Imperial sample (Velia, Salerno, Italy, I-II cent. CE). PLoS One12, e0180104 (2017).

Article 
PubMed Central 
PubMed 

Google Scholar 

Mahoney, P. Incremental enamel development in modern human deciduous anterior teeth. Am. J. Phys. Anthropol.147, 637–651 (2012).

Article 
PubMed 

Google Scholar 

Dean, C. Extension rates and growth in tooth height of modern human and fossil hominin canines and molars. Front. Oral Biol. 13, 68–73 (2009).

Mahoney, P. Dental fast track: Prenatal enamel growth, incisor eruption, and weaning in human infants. Am. J. Phys. Anthropol.156, 407–421 (2015).

Article 
PubMed 

Google Scholar 

Guatelli-Steinberg, D., Floyd, B. A., Dean, M. C. & Reid, D. J. Enamel extension rate patterns in modern human teeth: Two approaches designed to establish an integrated comparative context for fossil primates. J. Hum. Evol.63, 475–486 (2012).

Article 
PubMed 

Google Scholar 

Ortiz, A., Skinner, M. M., Bailey, S. E. & Hublin, J. J. Carabelli’s trait revisited: An examination of mesiolingual features at the enamel-dentine junction and enamel surface of Pan and Homo sapiens upper molars. J. Hum. Evol.63, 586–596 (2012).

Article 
PubMed 

Google Scholar 

Moorrees, C. F. A., Fanning, E. A. & Hunt, E. E. Age variation of formation stages for ten permanent teeth. J. Dent. Res.42, 1490–1502 (1963).

Article 
CAS 
PubMed 

Google Scholar 

Mahoney, P. Intraspecific variation in M1 enamel development in modern humans: implications for human evolution. J. Hum. Evol.55, 131–147 (2008).

Article 
PubMed 

Google Scholar 

Aris, C. Enamel growth rate variation of inner, mid, and outer enamel regions between select permanent tooth types across five temporally distinct British samples. Arch Oral Biol137, (105394, 2022).

Antoine, D., Hillson, S. & Dean, M. C. The developmental clock of dental enamel: A test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. J. Anat.214, 45–55 (2009).

Article 
PubMed Central 
PubMed 

Google Scholar 

Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One7, (e34131, 2012).

Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun.6, 1–8 (2015).

Article 
ADS 
CAS 

Google Scholar 

Fu, Q. et al. The genetic history of Ice Age Europe. Nature534, 200–205 (2016).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature513, 409–413 (2014).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Scorrano, G. et al. Bioarchaeological and palaeogenomic portrait of two Pompeians that died during the eruption of Vesuvius in 79 AD. Sci. Rep.12, 1–12 (2022).

Article 

Google Scholar 

Catalano, G. et al. A mitogenome sequence of an Equus hydruntinus specimen from Late Quaternary site of San Teodoro Cave (Sicily, Italy). Quat. Sci. Rev.236, 106280 (2020).

Article 

Google Scholar 

Antonioli, F. et al. Timing of the emergence of the Europe-Sicily bridge (40-17 cal ka BP) and its implications for the spread of modern humans. Geol. Soc. Spec. Publ.411, 111–144 (2016).

Article 
ADS 

Google Scholar 

Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun.12, 1–11 (2021).

Article 

Google Scholar 

Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science358, 655–658 (2017).

Article 
ADS 
PubMed Central 
PubMed 

Google Scholar 

Petr, M., Pääbo, S., Kelso, J. & Vernot, B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA116, 1639–1644 (2019).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA113, 10607–10612 (2016).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol.128, 415–423 (2005).

Article 
PubMed 

Google Scholar 

Coll Macià, M., Skov, L., Peter, B. M. & Schierup, M. H. Different historical generation intervals in human populations inferred from Neanderthal fragment lengths and mutation signatures. Nat. Commun.12, 1–11 (2021).

Article 

Google Scholar 

Cariaso, M. & Lennon, G. SNPedia: A wiki supporting personal genome annotation, interpretationand analysis. Nucleic Acids Res.40, (D1308-12, 2012).

Sherry, S. T. et al. DbSNP: The NCBI database of genetic variation. Nucleic Acids Res.29, 308–311 (2001).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Chaitanya, L. et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic. Sci. Int. Genet.35, 123–135 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Allentoft, M. E. et al. Population Genomics of Bronze Age Eurasia. Nature522, 167–172 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Christiaans, I. et al. Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands. Neth. Heart J.18, 254 (2010).

Google Scholar 

Richard, P. et al. Hypertrophic Cardiomyopathy. Circulation107, 2227–2232 (2003).

Article 
PubMed 

Google Scholar 

Tompkins, R. L. Human population variability in relative dental development. Am. J. Phys. Anthropol.99, 79–102 (1996).

Article 
CAS 
PubMed 

Google Scholar 

Hodgkins, J. et al. An infant burial from Arma Veirana in northwestern Italy provides insights into funerary practices and female personhood in early Mesolithic Europe. Sci Rep8, (23735, 2021).

Brenner, B., Seebohm, B., Tripathi, S., Montag, J. & Kraft, T. Familial hypertrophic cardiomyopathy: Functional variance among individual cardiomyocytes as a trigger of fhc-phenotype development. Front. Physiol.5, (392, 2014).

Bagnall, R. D. et al. A Prospective Study of Sudden Cardiac Death among Children and Young Adults. N. Engl. J. Med.374, 2441–2452 (2016).

Article 
PubMed 

Google Scholar 

Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature507, 225–228 (2014).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Günther, T. et al. Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol.16, e2003703 (2018).

Article 
PubMed Central 
PubMed 

Google Scholar 

Lévi-Strauss, C. Les Structures Élémentaires de La Parenté (Mouton de Gruyter, 1967).

Bittles, A. H. Consanguinity, genetic drift, and genetic diseases in populations with reduced numbers of founders. in Vogel and Motulsky’s Human Genetics: Problems and Approaches (Fourth Edition) 507–528 (Springer-Verlag, 2010). https://doi.org/10.1007/978-3-540-37654-5_19.

Ceballos, F. C. et al. Human inbreeding has decreased in time through the Holocene. Curr. Biol.31, 3925–3934.e8 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Palma di Cesnola, A. Il Paleolitico Superiore in Italia: Introduzione (Allo Studio, 1993).

Catalano, G. et al. Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: New archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily). Quat. Int.537, 24–32 (2020).

Article 

Google Scholar 

Modi, A. et al. More data on ancient human mitogenome variability in Italy: new mitochondrial genome sequences from three Upper Palaeolithic burials. Ann. Hum. Biol.48, 213–222 (2021).

Article 
PubMed 

Google Scholar 

Yu, H. et al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience25, 104244 (2022).

Article 
ADS 
PubMed Central 
PubMed 

Google Scholar 

Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol.23, 553–559 (2013).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Naudinot, N. et al. Between Atlantic and Mediterranean: Changes in technology during the Late Glacial in Western Europe and the climate hypothesis. Quat. Int.428, 33–49 (2017).

Article 

Google Scholar 

Boschin, F. et al. The first evidence for Late Pleistocene dogs in Italy. Sci. Rep.10, 1–14 (2020).

Article 

Google Scholar 

Šešelj, M. Brief communication: An analysis of dental development in Pleistocene Homo using skeletal growth and chronological age. Am. J. Phys. Anthropol.163, 531–541 (2017).

Article 
PubMed 

Google Scholar 

Fewlass, H. et al. Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone. Sci. Rep.9, 5342 (2019).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Talamo, S., Fewlass, H., Maria, R. & Jaouen, K. ‘Here we go again’: the inspection of collagen extraction protocols for 14 C dating and palaeodietary analysis. Sci. Technol. Archaeol. Res.7, 62–77 (2021).

PubMed Central 
PubMed 

Google Scholar 

Longin, R. New method of collagen extraction for radiocarbon dating. Nature230, 241–242 (1971).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved Collagen Extraction by Modified Longin Method. Radiocarbon30, 171–177 (1988).

Article 
CAS 

Google Scholar 

Van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci.26, 687–695 (1999).

Article 

Google Scholar 

Wacker, L., Němec, M. & Bourquin, J. A revolutionary graphitisation system: Fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res B268, 931–934 (2010).

Article 
ADS 
CAS 

Google Scholar 

Kromer, B., Lindauer, S., Synal, H. A. & Wacker, L. MAMS – A new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. B294, 11–13 (2013).

Article 
ADS 
CAS 

Google Scholar 

Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon62, 725–757 (2020).

Article 
CAS 

Google Scholar 

Birch, W. & Dean, M. C. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation. J. Forensic Leg. Med.22, 127–144 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012).

Müller, W. et al. Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically-defined LA-ICPMS profiles. Geochim. Cosmochim. Acta255, 105–126 (2019).

Article 
ADS 

Google Scholar 

Müller, W. & Anczkiewicz, R. Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite-a problem reassessed. J. Anal. Spectrom.31, 259–269 (2016).

Article 

Google Scholar 

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

Cleveland, W. S., Grosse, E. & Shyu, W. M. Local Regression Models. in Statistical Models in S (eds. Chambers, J. M. & Hastie, T. J.) (Routledge, 1992). https://doi.org/10.1201/9780203738535-8.

Vazzana, A. et al. High-accuracy methodology for the integrative restoration of archaeological teeth by using reverse engineering techniques and rapid prototyping. J Archaeol Sci Rep44, (103511, 2022).

Willerslev, E. & Cooper, A. Ancient DNA. Proc. R. Soc. B Biol. Sci.272, 16 (2005).

Google Scholar 

Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol.20, 541–544 (2005).

Article 
PubMed 

Google Scholar 

Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res.40, e3 (2012).

Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc.5, pdb.prot5448 (2010).

Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil – DNA – glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B Biol. Sci.370, 20130624 (2015).

Article 

Google Scholar 

Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA Sequence Capture of Mitochondrial Genomes Using PCR Products. PLoS One5, e14004 (2010).

Article 
ADS 
PubMed Central 
PubMed 

Google Scholar 

Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol.17, 60 (2016).

Article 
PubMed Central 
PubMed 

Google Scholar 

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Schiffels, S. GitHub – stschiff/sequenceTools. https://github.com/stschiff/sequenceTools (2020).

Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci. Data11, 1–10 (2024).

Article 

Google Scholar 

Mallick, S. & Reich, D. The Allen Ancient DNA Resource (AADR): A curated compendium of ancient human genomes. David Reich Lab Dataverse, V8 https://doi.org/10.7910/DVN/FFIDCW (2023).

Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol.5, 820–825 (2021).

Article 
PubMed Central 
PubMed 

Google Scholar 

Yu, H. Paleogenomics of Upper Paleolithic to Neolithic European hunter-gatherers. EDMOND, V3 https://doi.org/10.17617/3.Y1KJMF (2022).

Skoglund, P., Storå, J., Götherström, A. & Jakobsson, M. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci.40, 4477–4482 (2013).

Article 
CAS 

Google Scholar 

Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A Molecular Approach to the Sexing of the Triple Burial at the Upper Paleolithic Site of Dolní Věstonice. PLoS One11, e0163019 (2016).

Article 
PubMed Central 
PubMed 

Google Scholar 

Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics29, 1682–1684 (2013).

Article 
PubMed Central 
PubMed 

Google Scholar 

Rasmussen, M. et al. An aboriginal Australian genome reveals separate human dispersals into Asia. Science334, 94–98 (2011).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinforma.15, 356 (2014).

Article 

Google Scholar 

Furtwängler, A. et al. Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci. Rep.8, 14075 (2018).

Article 
ADS 
PubMed Central 
PubMed 

Google Scholar 

Nakatsuka, N. et al. ContamLD: Estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biol.21, 199 (2020).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol.16, 224 (2015).

Article 
PubMed Central 
PubMed 

Google Scholar 

Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res.44, W58–W63 (2016).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci Int Genet Suppl Ser5, e392–e394 (2015).

Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modem humans. Nature408, 708–713 (2000).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Briggs, A. W. et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science325, 318–321 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms | Molecular Biology and Evolution | Oxford Academic. Mol. Biol. Evol.35, 1547–1549 (2018).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-africans and a late glacial population turnover in Europe. Curr. Biol.26, 827–833 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Guindon, S. & Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol.52, 696–704 (2003).

Article 
PubMed 

Google Scholar 

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods9, https://doi.org/10.1038/nmeth.2109 (2012).

Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol.4, vey016 (2018).

Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol.67, 901–904 (2018).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol15, e1006650 (2019).

Ralf, A., Montiel González, D., Zhong, K. & Kayser, M. Yleaf: Software for Human Y-Chromosomal Haplogroup Inference from Next-Generation Sequencing Data. Mol. Biol. Evol.35, 1291–1294 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun.5, 5257 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Mathieson, I. et al. The genomic history of southeastern Europe. Nature555, 197–203 (2018).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Raghavan, M. et al. Upper palaeolithic Siberian genome reveals dual ancestry of native Americans. Nature505, 87–91 (2014).

Article 
ADS 
PubMed 

Google Scholar 

Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature524, 216–219 (2015).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature514, 445–449 (2014).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science (1979)358, 659–662 (2017).

CAS 

Google Scholar 

Skoglund, P. et al. Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science (1979)344, 747–750 (2014).

CAS 

Google Scholar 

Antonio, M. L. et al. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science366, 708–714 (2019).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science346, 1113–1118 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

González-Fortes, G. et al. Paleogenomic Evidence for Multi-generational Mixing between Neolithic Farmers and Mesolithic Hunter-Gatherers in the Lower Danube Basin. Curr. Biol.27, 1801–1810.e10 (2017).

Article 
PubMed Central 
PubMed 

Google Scholar 

De Barros Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature557, 369–374 (2018).

Article 
ADS 

Google Scholar 

Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature528, 499–503 (2015).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun.9, 1–11 (2018).

ADS 

Google Scholar 

Jones, E. R. et al. The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers. Curr. Biol.27, 576–582 (2017).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Patterson, N. et al. Ancient admixture in human history. Genetics192, 1065–1093 (2012).

Article 
PubMed Central 
PubMed 

Google Scholar 

Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature522, 207–211 (2015).

Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature536, 419–424 (2016).

Mafessoni, F. et al. A high-coverage neandertal genome from chagyrskaya cave. Proc. Natl Acad. Sci. USA117, 15132–15136 (2020).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science338, 222–226 (2012).

Article 
ADS 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The Date of Interbreeding between Neandertals and Modern Humans. PLoS Genet.8, e1002947 (2012).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Peter, B. M. 100,000 years of gene flow between Neandertals and Denisovans in the Altai mountains. bioRxiv, https://doi.org/10.1101/2020.03.13.990523 (2020).

Auton, A. et al. A global reference for human genetic variation. The 1000 Genomes Project Consortium. Nature526, 68-74 (2015).

Herrero, J. et al. Ensembl comparative genomics resources. Database2016, bav096 (2016).

Article 
PubMed Central 
PubMed 

Google Scholar 

Hinch, A. G. et al. The landscape of recombination in African Americans. Nature476, 170–175 (2011).

Montaner, D. SNPediaR: Query data from SNPedia. R package version 1.30.0, https://github.com/genometra/SNPediaR (2024).

Walsh, S. et al. DNA-based eye colour prediction across Europe with the IrisPlex system. Forensic Sci. Int. Genet.6, 330–340 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Walsh, S. et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet.9, 150–161 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Walsh, S. et al. Global skin colour prediction from DNA. Hum. Genet.136, 847–863 (2017).

Article 
CAS 
PubMed Central 
PubMed 

Google Scholar 

Source link : https://www.nature.com/articles/s41467-024-51150-x

Author :

Publish date : 2024-09-20 07:00:00

Copyright for syndicated content belongs to the linked Source.

Exit mobile version