Harpak, A. & Przeworski, M. The evolution of group differences in changing environments. PLoS Biol. 19, e3001072 (2021).
Google Scholar
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
Google Scholar
Roseman, C. C. Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc. Natl Acad. Sci. 101, 12824–12829 (2004).
Google Scholar
Whitlock, M. C. Evolutionary inference from QST. Mol. Ecol. 17, 1885–1896 (2008).
Google Scholar
Savell, K. R. R., Auerbach, B. M. & Roseman, C. C. Constraint, natural selection, and the evolution of human body form. Proc. Natl Acad. Sci. USA 113, 9492–9497 (2016).
Google Scholar
Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).
Google Scholar
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Google Scholar
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
Google Scholar
Cox, S. L. et al. Predicting skeletal stature using ancient DNA. Am. J. Biol. Anthropol. 177, 162–174 (2022).
Google Scholar
Marciniak, S. et al. An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proc. Natl Acad. Sci. 119, e2106743119 (2022).
Google Scholar
Cox, S. L., Ruff, C. B., Maier, R. M. & Mathieson, I. Genetic contributions to variation in human stature in prehistoric Europe. Proc. Natl Acad. Sci. USA 116, 21484–21492 (2019).
Google Scholar
Bickle, P. & Whittle, A. (eds) The First Farmers of Central Europe (Oxbow, 2013).
Bakels, C. C. The Western European Loess Belt: Agrarian History, 5300 BC–AD 1000 (Springer, 2009).
Bentley, R. A. et al. Community differentiation and kinship among Europe’s first farmers. Proc. Natl Acad. Sci. USA 109, 9326–9330 (2012).
Google Scholar
Nicklisch, N., Oelze, V. M., Schierz, O., Meller, H. & Alt, K. W. A healthier smile in the past? Dental caries and diet in early neolithic farming communities from Central Germany. Nutrients 14, 1831 (2022).
Google Scholar
Knipper, C. in Der Zahn der Zeit – Mensch und Kultur im Spiegel interdisziplinärer Forschung. Festschrift für Kurt W. Alt (eds Meyer, C. et al.) 211–225 (Veröffentlichungen des LDA und Archäologie Sachsen-Anhalt, 2020).
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Google Scholar
Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).
Google Scholar
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Google Scholar
Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).
Google Scholar
Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).
Google Scholar
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
Google Scholar
Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).
Google Scholar
Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. Elife 8, e39702 (2019).
Google Scholar
Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. Elife 8, e39725 (2019).
Google Scholar
Vercellotti, G. et al. Exploring the multidimensionality of stature variation in the past through comparisons of archaeological and living populations. Am. J. Phys. Anthropol. 155, 229–242 (2014).
Google Scholar
Roseman, C. C. & Auerbach, B. M. Ecogeography, genetics, and the evolution of human body form. J. Hum. Evol. 78, 80–90 (2015).
Google Scholar
Stock, J. T. et al. Long-term trends in human body size track regional variation in subsistence transitions and growth acceleration linked to dairying. Proc. Natl Acad. Sci. USA 120, e2209482119 (2023).
Google Scholar
Rosenstock, E., Ebert, J., Martin, R. & Groß, M. LiVES collection of osteological anthropometry digest. LiVES COstA Digest. Edition Topoi. https://doi.org/10.17171/2-12-2-1 (2019).
Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLOS Genet. 9, e1003500 (2013).
Google Scholar
Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).
Google Scholar
Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits. Cell Genom. 3, 100297 (2023).
Google Scholar
Bogaard, A. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices (Routledge, 2004).
Schier, W. in 6000 BC: Transformation and Change in the Near East and Europe (eds Biehl, P. & Rosenstock, E.) 372–392 (Cambridge Univ. Press, 2022).
Betti, L. et al. Climate shaped how Neolithic farmers and European hunter-gatherers interacted after a major slowdown from 6,100 BCE to 4,500 BCE. Nat. Hum. Behav. 4, 1004–1010 (2020).
Google Scholar
Dürrwächter, C., Craig, O. E., Collins, M. J., Burger, J. & Alt, K. W. Beyond the grave: variability in Neolithic diets in Southern Germany? J. Archaeol. Sci. 33, 39–48 (2006).
Google Scholar
Oelze, V. M. et al. Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J. Archaeol. Sci. 38, 270–279 (2011).
Google Scholar
Bentley, R. A. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 251–290 (Oxbow Books, 2013).
Denaire, A. et al. The cultural project: formal chronological modelling of the Early and Middle Neolithic sequence in Lower Alsace. J. Archaeol. Method Theory 24, 1072–1149 (2017).
Google Scholar
Gillis, R. E. et al. Stable isotopic insights into crop cultivation, animal husbandry, and land use at the Linearbandkeramik site of Vráble-Vel’ké Lehemby (Slovakia). Archaeol. Anthropol. Sci. 12, 256 (2020).
Google Scholar
Nicklisch, N. et al. Holes in teeth—dental caries in Neolithic and Early Bronze Age populations in Central Germany. Ann. Anat. 203, 90–99 (2016).
Google Scholar
Gillis, R. E. et al. The evolution of dual meat and milk cattle husbandry in Linearbandkeramik societies. Proc. R. Soc. B 284, 20170905 (2017).
Google Scholar
Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).
Google Scholar
Münster, A. et al. 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites. PloS ONE 13, e0194862 (2018).
Google Scholar
Ghosh, S. Protein quality in the first thousand days of life. Food Nutr. Bull. 37, S14–S21 (2016).
Google Scholar
Gray, J. P. & Wolfe, L. D. Height and sexual dimorphism of stature among human societies. Am. J. Phys. Anthropol. 53, 441–456 (1980).
Google Scholar
Guatelli-Steinberg, D. & Lukacs, J. R. Interpreting sex differences in enamel hypoplasia in human and non-human primates: developmental, environmental, and cultural considerations. Am. J. Phys. Anthropol. 110, 73–126 (1999).
Google Scholar
Lubell, D., Jackes, M. & Meiklejohn, C. Archaeology and human biology of the Mesolithic–Neolithic transition in southern Portugal: a preliminary report. In The Mesolithic in Europe. Proc. Third International Symposium 632–640 (John Donaldson Publishers Ltd, 1990).
McFadden, C. & Oxenham, M. F. A paleoepidemiological approach to the osteological paradox: investigating stress, frailty and resilience through cribra orbitalia. Am. J. Phys. Anthropol. 173, 205–217 (2020).
Google Scholar
German, A. & Hochberg, Z. Sexual dimorphism of size ontogeny and life history. Front. Pediatr. https://doi.org/10.3389/fped.2020.00387 (2020).
Stini, W. in The Analysis of Prehistoric Diets (ed. Stini, W.) 191–226 (Academic Press, 1985).
Brauer, G. in Sexual Dimorphism in Homo sapiens: A Question of Size (ed. Hall, R.) 245–259 (Praeger, 1982).
Vlassoff, C. Gender differences in determinants and consequences of health and illness. J. Health Popul. Nutr. 25, 47–61 (2007).
Google Scholar
Dehingia, N. & Raj, A. Sex differences in covid-19 case fatality: do we know enough? Lancet Glob. Health 9, e14–e15 (2021).
Google Scholar
Takahashi, T. et al. Sex differences in immune responses that underlie covid-19 disease outcomes. Nature 588, 315–320 (2020).
Google Scholar
Frayer, D. W. & Wolpoff, M. H. Sexual dimorphism. Annu. Rev. Anthropol. 14, 429–473 (1985).
Google Scholar
Gaulin, S. J. & Boster, J. S. Human marriage systems and sexual dimorphism in stature. Am. J. Phys. Anthropol. 89, 467–475 (1992).
Google Scholar
Ruff, C. B. (ed.) Skeletal Variation and Adaptation in Europeans: Upper Paleolithic to the Twentieth Century (John Wiley & Sons, 2018).
Marwaha, R. K. et al. Nationwide reference data for height, weight and body mass index of Indian schoolchildren. Nat. Med. J. India 24, 269–277 (2011).
Abdulrazzaq, Y. M., Moussa, M. A. & Nagelkerke, N. National growth charts for the United Arab Emirates. J. Epidemiol. 18, 295–303 (2008).
Google Scholar
Moradi, A. & Guntupalli, A. M. in Gender and Discrimination: Health, Nutritional Status, and Role of Women in India (eds Pal, M. et al.) 537–552 (Oxford Univ. Press, 2009).
Kanazawa, S. & Novak, D. L. Human sexual dimorphism in size may be triggered by environmental cues. J. Biosoc. Sci. 37, 657–665 (2005).
Google Scholar
Baten, J. & Murray, J. E. Heights of men and women in 19th-century Bavaria: economic, nutritional, and disease influences. Explor. Econ. Hist. 37, 351–369 (2000).
Google Scholar
Castellucci, H. et al. Gender inequality and sexual height dimorphism in Chile. J. Biosoc. Sci. 53, 38–54 (2021).
Google Scholar
Jayachandran, S. & Pande, R. Why are Indian children so short? The role of birth order and son preference. Am. Econ. Rev. 107, 2600–2629 (2017).
Google Scholar
Bentley, R. A. et al. Prehistoric migration in Europe: strontium isotope analysis of early Neolithic skeletons. Curr. Anthropol. 43, 799–804 (2002).
Google Scholar
Bickle, P. Thinking gender differently: new approaches to identity difference in the central European Neolithic. Camb. Archaeol. J. 30, 201–218 (2020).
Google Scholar
Garvin, H. M. The Effects of Living Conditions on Human Cranial and Postcranial Sexual Dimorphism. Ph.D. thesis, The Johns Hopkins Univ. (2012).
Papathanasiou, A. in Human Bioarchaeology of the Transition to Agriculture (eds Pinhasi, R. & Stock, J. T.) 87–106 (John Wiley & Sons, 2011).
Papathanasiou, A. Health status of the Neolithic population of Alepotrypa Cave, Greece. Am. J. Phys. Anthropol. 126, 377–390 (2005).
Google Scholar
Silva, A. M. & Cunha, E. in Actas del V Congreso Nacional de Paleopatologia 353–356 (Asociación de Española de Paleopatología, 2001).
Cucina, A. Brief communication: diachronic investigation of linear enamel hypoplasia in prehistoric skeletal samples from Trentino, Italy. Am. J. Phys. Anthropol. 119, 283–287 (2002).
Google Scholar
Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).
Google Scholar
Childebayeva, A. et al. Population genetics and signatures of selection in Early Neolithic European farmers. Mol. Biol. Evol. 39, msac108 (2022).
Google Scholar
Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).
Google Scholar
Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).
Google Scholar
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Google Scholar
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).
Google Scholar
González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810.e10 (2017).
Google Scholar
Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).
Google Scholar
Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).
Google Scholar
Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).
Google Scholar
Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020).
Google Scholar
Nikitin, A. G. et al. Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Sci. Rep. 9, 19544 (2019).
Google Scholar
Olalde, I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015).
Google Scholar
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).
Google Scholar
Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).
Google Scholar
Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428–3433 (2018).
Google Scholar
Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177.e7 (2019).
Google Scholar
UK Biobank GWAS Results (Neale Lab, accessed 20 October 2021); http://www.nealelab.is/uk-biobank
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
Google Scholar
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Google Scholar
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day europeans. Nature 513, 409–413 (2014).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Hujić, A. Das Kind in uns unter der Lupe der Isotopie, Allometrie und Pathologie. Zusammenhang zwischen δ15N und δ13C als Eiweißproxy und dem Knochenwachstum bei linienbandkeramischen Individuen aus Stuttgart-Mühlhausen, ‘Viesenhäuser Hof’ und Schwetzingen unter Berücksichtigung verschiedener Indikatoren für Nährstoffversorgung. Ph.D. thesis, Freie Univ. https://doi.org/10.17169/refubium-5564 (2016).
Nicklisch, N. Spurensuche am Skelett: Paläodemografische und epidemiologische Untersuchungen an neolithischen und frühbronzezeitlichen Bestattungen aus dem Mittelelbe-Saale-Gebiet im Kontext populationsdynamischer Prozesse (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Landesmuseum, 2017).
Meyer, C. et al. Early Neolithic executions indicated by clustered cranial trauma in the mass grave of Halberstadt. Nat. Commun. 9, 2472 (2018).
Google Scholar
Rosenstock, E. et al. Human stature in the Near East and Europe ca. 10,000–1000 BC: its spatiotemporal development in a Bayesian errors-in-variables model. Archaeol. Anthropol. Sci. 11, 5657–5690 (2019).
Google Scholar
Ruff, C. B. et al. Stature and body mass estimation from skeletal remains in the European Holocene. Am. J. Phys. Anthropol. 148, 601–617 (2012).
Google Scholar
Acsádi, G., Nemeskéri, J. & Balás, K. History of Human Life Span and Mortality (Akademiai Kiado Budapest, 1970).
Krishan, K. et al. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 261, 165.e1–8 (2016).
Google Scholar
Ash, A. et al. Regional differences in health, diet and weaning patterns amongst the first Neolithic farmers of central Europe. Sci. Rep. 6, 29458 (2016).
Google Scholar
Lillie, M. Vedrovice: demography and palaeopathology in an early farming population. Anthropologie 46, 135–152 (2008).
Whittle, A. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 49–100 (Oxbow Books, 2013).
Brickley, M. B. Cribra orbitalia and porotic hyperostosis: a biological approach to diagnosis. Am. J. Phys. Anthropol. 167, 896–902 (2018).
Google Scholar
Scheibner, A. Prähistorische Ernährung in Vorderasien und Europa. Eine kulturgeschichtliche Synthese auf der Basis ausgewählter Quellen. Schriften zum Lebensstandard in der Vorgeschichte 1 (Berliner Archäologische Forschungen, Leidorf, 2016).
O’Brien, D. M. Stable isotope ratios as biomarkers of diet for health research. Annu. Rev. Nutr. 35, 565–594 (2015).
Google Scholar
Richards, M. P., Montgomery, J., Nehlich, O. & Grimes, V. Isotopic analysis of humans and animals from Vedrovice. Anthropologie 46, 185–194 (2008).
Bickle, P. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 159–204 (Oxbow Books, 2013).
Hofmann, D. et al. in The First Farmers in Central Europe: Diversity in LBK Lifeways (eds Bickle, P. & Whittle, A.) 205–250 (Oxbow Books, 2013).
Morey, R. D. & Rouder, J. N. BayesFactor: computation of Bayes factors for common designs. R package v.0.9.12-4.4 (The Comprehensive R Archive Network, 2022).
Rouder, J. N. & Morey, R. D. Default Bayes factors for model selection in regression. Multivariate Behav. Res. 47, 877–903 (2012).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Gronenborn, D., Horejs, B. Map: Expansion of Farming in Western Eurasia, 9600–4000 cal BC (update vers. 2021.2) (RGZM/ÖAI, 2021); https://www.academia.edu/9424525/Map_Expansion_of_farming_in_western_Eurasia_9600_4000_cal_BC_update_vers_2021_2_
Source link : https://www.nature.com/articles/s41562-023-01756-w
Author :
Publish date : 2023-12-11 08:00:00
Copyright for syndicated content belongs to the linked Source.